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EXECUTIVE SUMMARY

LIDAR-BASED MOBILE MAPPING SYSTEM
FOR LANE WIDTH ESTIMATION

IN WORK ZONES

Introduction

Road digital maps that include road characteristics (e.g., lane

marking, lane width, slope, curvature, clothoid, shoulder width,

and shoulder barriers) are useful for driver assistance systems,

road safety inspection, traffic accident reduction, and infrastruc-

ture monitoring. FHWA reported that there were an estimated

96,626 accidents in work zones during 2015, out of which 642

accidents involved at least one fatality (FHWA, n.d.). Efficient

work zone monitoring and inspection is one of the critical tasks to

decrease traffic accidents. Lane width evaluation is one of the

crucial aspects of road safety inspection, especially in work zones

where a narrow lane width can result in a reduced roadway capacity

and also increase the probability of severe accidents. In the past,

collecting geospatial data for building road digital maps was an

expensive, time-consuming, and labor-intensive task. Moreover,

manual on-site data collection can expose field crew to dangerous

road traffic. Using mobile mapping systems (MMS) equipped with

Light Detection and Ranging (LiDAR) units and cameras, geo-

referenced point clouds and images can be collected rapidly in work

zone areas without affecting traffic. Then, road characteristics can

be derived from the acquired point cloud for risk assessment.

This report presents an approach to derive lane width estimates

using point clouds acquired from a calibrated mobile mapping

system. To derive point clouds with high positional accuracy,

estimating the mounting parameters relating the different laser

scanners to the onboard GNSS/INS unit is the first and most

necessary step. This report proposes a multi-unit LiDAR system

calibration procedure where the mounting parameters can be esti-

mated through minimizing the normal distance between conjugate

planar/linear features in overlapping point clouds derived from

different drive-runs. To increase the efficiency of semi-automatic

conjugate feature extraction from the LiDAR data, specifically

designed calibration boards covered by highly reflective surfaces

that could be easily deployed and set up within outdoor environ-

ments are used in this study. After generating the LiDAR point

cloud using the estimated mounting parameters, the road surface

can be extracted with the assistance of navigation data, which in

turn is used to identify lane markings. Lane markings have a high

retro-reflective property that will be exhibited as high intensity

points when scanned by a laser scanner. This property can be used

to distinguish lane markings from the extracted road surface in the

LiDAR point cloud. Then, non-lane marking points among the

extracted high intensity points are identified and removed. Next,

the lane marking centerline is derived for lane width estimation.

Several data collection missions have been conducted in this

study. To ensure the acquisition of an accurate point cloud, the cali-

bration procedure was applied first and the generated LiDAR point

cloud was used for lane width estimation. Various experimental

setups are used in order to evaluate the performance of the pro-

posed calibration strategy as well as the lane width estimation

approach. First, the performance of the proposed calibration

strategy is evaluated through the a-posteriori variance factor

of the least squares adjustment (LSA) procedure and the quality

of fit of the adjusted point cloud to planar surfaces and linear

features before and after the calibration process. Then, to demon-

strate the feasibility and performance of the proposed lane width

estimate approach, a comprehensive testing is conducted with six

datasets collected in different seasons and using different sensors.

The first experiment shows the importance of accurate estimates

of mounting parameters for identification of lane markings and

lane width estimation. The second demonstrates the compatibility

of estimated lane width from two different types of spinning

multi-beam laser scanners. The third indicates the accuracy of

calibration results and the precision of lane width estimates by

comparing the results obtained from five datasets for two road

segments (with a total length of approximately 30 miles) scanned

by different sensors in different seasons. The last experiment demon-

strates the accuracy of lane width estimates by comparing the results

obtained for a test dataset collected for a road segment with those

derived from manually digitized lane markers and on-site manual

measurements. These experimental results indicate that the pro-

posed strategy can provide lane width estimates that are precise to

around 2 cm and have an accuracy of about 3 cm.

Findings

N When the mounting parameters are inaccurate, the derived

point cloud would be distorted. In this case, precise lane

width estimates cannot be derived. Although the lane width

estimation strategy includes outlier removal and LSA-based

line fitting that can minimize the effect of inaccurate moun-

ting parameters, it cannot mitigate the effects altogether.

N The lane widths derived from HDL32E and VLP16 laser

scanners are found to be compatible. However, VLP16

generates more sparse points than HDL32E, which would

cause incomplete centerline extraction. In case of curved

road segments, incomplete centerline extraction would result

in inaccurate lane width estimation. Therefore, in order to

avoid the discrepancies caused due to the sparse nature of point

cloud acquired from VLP16, it is recommended to have slower

driving speed during (e.g., 25 miles/hour) data collection.

N The lane width estimates for two road segments from five

different datasets are derived, and the results demonstrate

that the precision of the proposed lane width estimation

strategy can range from 1 cm to 3 cm.

N The accuracy of lane width estimates is evaluated by com-

paring the results obtained for a test dataset collected for a

road segment with those derived from manually digitized lane

markers and on-site manual measurements (ground truth).

The difference between the derived lane width estimates using

the proposed strategy and ground truth is 3.04 cm, which

validates the accuracy of the lane width estimates from the

proposed strategy and also indicates the accuracy of moun-

ting parameter estimates from the system calibration. Also,

the difference between the lane width obtained from the

manually digitized centerline and ground truth is around

1.31 cm, which again illustrates the accuracy of mounting

parameter estimates.

Implementation

Data Collection
The first step in the process of data collection is to mount the

mapping system onto a mobile platform (here, a car) and test the

operation of the different equipment in order to avoid any tech-

nical glitches during the course of data collection. The setup of

MMS takes about 30 minutes. As discussed before, each data

collection is preceded by a calibration dataset collection for which

the calibration targets are set up in an outdoor environment,

which is accomplished in another 30 minutes. It is followed by



5 minutes of dynamic alignment of the GNSS/INS unit, and then a

total of approximately 10 minutes of drive-runs at an average

speed of 4 miles per hour around the calibration test field. After

that, work zone data is ready to be collected and needs to be moni-

tored. The driving speed is around 40 miles per hour for work

zone data collection. Finally, the data collection is ended with

another dynamic alignment of the system for 5 minutes.

Data Processing
3D Point Cloud Reconstruction
The first and foremost step for 3D point cloud reconstruction is

the processing of GNSS/INS data to generate the navigation data-

set using the post-processing software provided by NovAtel or

Applanix (depending on the GNSS/INS unit used), which takes

about 30 minutes. The Velodyne laser units store the captured

data in PCAP format that needs to be decoded to extract useful

information about the scanned points; it is used along with the

navigation data and initial estimates of mounting parameters to

reconstruct an initial 3D point cloud (in *.las format). The time

taken to reconstruct the PCAP files depends on the amount of

data collected and the number of threads used during reconstruc-

tion (i.e., the number of PCAP files that are simultaneously recon-

structed). For instance, a mission of 2.5 hours will result in a total

of about 82 PCAP files, which would take a total of approximately

1.5 hours for reconstruction with five threads.

System Calibration
After reconstruction, the mounting parameters of MMS are

calibrated in order to be able to obtain a point cloud with higher

positional accuracy. First, the navigation data is used to extract

the beginning and ending times for each of the parallel drive-runs

around the calibration targets. Next, the point cloud captured in

each drive-run is stored as a separate *.las file. These files are used

to carry out a semi-automatic conjugate feature extraction process

for calibration by determining seed points for highly reflective sign

boards and checkerboards, diagonally opposite corners of ground/

wall patches, and end points of linear features. The track separa-

tion and feature extraction can be achieved in a total of about

1 hour. Next, the extracted conjugate features are used as input

for calibration (which takes about 10 minutes), thus resulting in

accurate estimates of mounting parameters.

Lane Width Estimation

Having accomplished a successful calibration, all the PCAP files

(raw laser scanning measurement) are again reconstructed using

the new accurate estimates of mounting parameters to generate

revised *.las files (point clouds) that can be used for lane width

estimation. In order to estimate lane width, first the road surface is

extracted, which takes from 30 minutes to 1 hour. Next, the high

intensity points representing the lane markings are extracted from

the road surface in 5 minutes. Then, the navigation data is used

along with the high-intensity points to derive the lane marking

centerline, which requires 10 minutes. Finally, the derived center-

lines from opposite sides of the road are separated out and used

to derive the lane width estimates, which takes about 10 minutes.

Based on these time estimates for each step, the total data pro-

cessing time for any collected dataset can be estimated.
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1. INTRODUCTION

Road digital maps including road characteristics (e.g.,
lane marking, lane width, slope, curvature, clothoid,
shoulder width, and shoulder barriers) are useful for
driver assistance systems, road safety inspection, traffic
accident reduction, and infrastructure monitoring. The
road characteristics are more critical in work zones
since the lanes in such areas undergo very frequent
alterations over the lifetime of a project, thus increasing
the rate of accidents (Ozturk, Ozbay, & Yang, 2014).
Federal Highway Administration (FHWA) reported
that there were an estimated 96,626 accidents at work
zones in 2015, out of which 642 accidents involved at
least one fatality (FHWA, n.d.). Efficient work zone
monitoring and inspection is one of the critical tasks to
decrease traffic accidents. Lane width is an important
aspect for road safety inspection in work zones. When
a lane is narrow, it would result in a reduced roadway
capacity, which would lead to traffic congestion and
also, increase the probability of severe accidents. More-
over, the lane capacity in work zones is drastically less
than that in non-work zone areas with the same lane
width, as shown in Figure 1.1 (Mekker et al., 2018), which
indicates, for instance, a reduction of 900 vehicles per
hour for a 12 ft lane from HCM 2010. In work zones
that have low capacity, a lane width reduction of 1 ft
(30.48 cm) would result in decrease of 100 vehicles
per hour per lane, thus leading to a severe congestion.
Therefore, an accurate estimation of lane width is nec-
essary. However, collecting geospatial data in work zones
should consider the following aspects:

1. Manual on-site data collection is an expensive, time-

consuming, and labor-intensive task. Moreover, it can

expose field crew to dangerous road traffic.

2. To the best of authors’ knowledge, there is no open source
GIS database, such as OpenStreetMap, that consists of
lane width information in work zones.

3. Scheduling airborne image collection missions at the
required high frequency for monitoring work zones would
be expensive. Moreover, the logistics and deployment
of platforms/sensors for the mission on time might not
be possible.

4. High-resolution satellites may not be able to capture data
over work zone areas at sufficiently frequent time inter-
vals. Furthermore, traffic conditions might hinder lane
width estimation.

5. Due to the short lifetime of construction projects and
continuous alteration of lanes, open source GIS data and
satellite images may not be able to provide up-to-date
information for work zones.

Using mobile mapping systems (MMS) equipped
with Light Detection and Ranging (LiDAR) units and
cameras, geo-referenced point clouds and images can be
collected rapidly in work zones without affecting traffic.
Then, road characteristics can be derived from the
acquired point cloud for risk assessment. This report
first introduces multi-unit LiDAR system calibration
procedure for deriving point cloud with high positional
accuracy and then, discusses the lane width estimation
approach using LiDAR point cloud acquired from a
calibrated MMS.

The remainder of this report presents the proposed
framework in more detail. First, a literature review of
existing approaches for MMS calibration and road feature
extraction are presented in Chapter 2. Then, an overview
of the mobile mapping system used in this research is
introduced in Chapter 3. Next, the conceptual basis of
LiDAR point positioning is discussed in Chapter 4.
In Chapter 5, the proposed calibration procedure of
a mobile mapping system comprising several spinning

Figure 1.1 Summary of freeway capacity estimation for different scenarios (Mekker et al., 2018).
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multi-beam laser scanners (i.e., Velodyne laser scanners)
and GNSS/INS unit is delivered. Moreover, the perfor-
mance of the proposed calibration strategy is evaluated
through the a-posteriori variance factor of the LSA
procedure and the quality of fit of the adjusted point
clouds to the best-fitted model before and after the cali-
bration process. After deriving an accurate point cloud,
the proposed lane width estimation strategy is discussed
in Chapter 6. Additionally, four validation methodol-
ogies for the proposed lane width estimation strategy
are provided: (1) investigating the impact of the estimated
mounting parameters from multi-unit LiDAR system
calibration on the identification of lane markings and
derived lane width estimates; (2) comparison of results
from two types of laser scanners; (3) analysis of multiple
datasets collected over the same test area to demonstrate
the precision of estimated lane width and reliability of
the introduced calibration approach; and (4) compar-
ison with on-site manual measurements and manually
digitized lane markers to show the accuracy of estimated
lane width. After the discussion of the proposed strategies
and experimental results, an implementation overview
is described in Chapter 7. Finally, the report concludes
with a summary of the characteristics of this study and
provides recommendations for future work in Chapter 8.

2. LITERATURE REVIEW

Mobile mapping systems are able to rapidly acquire
geo-spatial data pertaining the environment within which
they are deployed. MMSs were developed in the late
1980s and early 1990s (Ellum & El-Sheimy, 2002; Novak
& Bossler, 1995; Puente, González-Jorge, Martı́nez-
Sánchez, & Arias, 2013). In the early stage, MMSs usually
carried a set of optical cameras and a geo-referencing
system (i.e., integrated Global Navigation Satellite Sys-
tems and Inertial Navigation Systems—GNSS/INS),
which is capable of providing accurate position and
orientation of the platform at high frequency (Schwarz
& El-Sheimy, 2007). With the emergence of laser scan-
ners, modern MMSs usually carry both laser scanners
and optical cameras as well as a geo-referencing system.
Laser scanners onboard airborne and terrestrial plat-
forms have been established as a proven technology for
the acquisition of dense point clouds with high positional
accuracy. The main factors behind the widespread use
of LiDAR systems include the ever-continuous improve-
ment in GNSS/INS direct geo-referencing technology
as well as enhanced performance and reduced size and
cost of laser scanning units. Currently, there are com-
mercially available LiDAR units that are capable of
emitting more than a quarter million pulses per second
at a cost of less than $10k. Such availability, together
with the ever-increasing range of applications—such
as Digital Building Model generation, transportation
corridor monitoring, telecommunications, precision agri-
culture, infrastructure monitoring, seamless outdoor-
indoor mapping, and power line clearance evaluation
(Lin et al., 2013; Puente et al., 2013; Weiss & Biber,
2011; Williams, Olsen, Roe, & Glennie, 2013)—have

led to the development of multi-unit mobile LiDAR
systems onboard airborne and terrestrial platforms that
are either manned or unmanned. However, the attain-
ment of the full positioning potential of such systems is
contingent on an accurate calibration of the mobile
mapping unit as a whole. Therefore, calibration of the
system is a necessary step and the previous research in
this field is discussed in section 2.1. After calibrating
the mobile mapping system, an accurate 3D point
cloud can be reconstructed to derive useful information
along the road surface (e.g., road surface extraction,
lane marking identification, characteristics of roads)
and the progress in this domain is briefly described in
section 2.2.

2.1 Calibration of Mobile Mapping Systems

The calibration of MMSs to estimate the mounting
parameters relating the different components, such as
laser scanners, cameras, and GNSS/INS unit, is the fore-
most step to get the full positioning potential of MMSs.
Habib, Kersting, Shaker, and Yan (2011) studied the
impact of airborne LiDAR system calibration on the
relative and absolute accuracy of the derived point
clouds, both qualitatively and quantitatively. The
relative accuracy was evaluated by quantifying the
degree of co-alignment of overlapping strips before and
after calibration, whereas the absolute accuracy was
evaluated by quantifying the degree of compatibility
between LiDAR and control surfaces before and after
calibration. This report proposes a multi-unit LiDAR
system calibration strategy for a mobile terrestrial plat-
form, which can be used to directly estimate the moun-
ting parameters relating spinning multi-beam laser
scanners to the onboard GNSS/INS unit.

The cost-effective Velodyne laser scanner, which is a
spinning multi-beam laser unit and can rapidly capture
a high volume of data, has been used in many mobile
mapping systems and robotics applications (Choi, 2014;
Schwarz, 2010; Vallet, Xiao, & Brédif, 2015). Over the
past few years, a great deal of research has been devoted
to modeling the inherent systematic errors in Velodyne
laser scanners as well as the calibration of LiDAR
systems (Atanacio-Jiménez et al., 2011; Glennie et al.,
2013). Underwood, Hill, and Scheding (2007) calibrated
the extrinsic parameters relating a SICK LMS-291 to a
NovAtel Synchronized Position Attitude Navigation
(SPAN) system by minimizing the discrepancy between
sensed data and a known structure (i.e., a vertical pole
and relatively flat ground). Muhammad et al. (2010)
performed calibration of a rotating multi-beam LiDAR
with the objective for aligning the scan data as close
as possible to a ground truth environment. He, Zhao,
Davoine, Cui, and Zha (2013) used pairwise multi-type
3D geometric features (i.e., point, line, plane) to derive
the extrinsic parameters between 2D LiDAR and GPS/
IMU. First, the points are segmented into different fea-
tures and their quality is evaluated to compute weights
to be used in the minimization of normal distance
between conjugate features. However, when the initial
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parameters are considerably inaccurate, the segments
and derived weights may not be reliable. Chan, Lichti,
and Belton (2013) introduced an intrinsic parameters
calibration for Velodyne HDL-32E based on static
stations and also analyzed the temporal stability of
range measurements which indicated an approximate
warm-up time of 2000 sec for most laser beams. Glennie,
Kusari, and Facchin (2016) performed a geometric cali-
bration with stationary VLP-16 to marginally improve
the accuracy of the point clouds by approximately 20%.
Moreover, they also investigated the range accuracy
of VLP-16, which is quoted to have an RMSE value
between 22 to 27 mm in the factory supplied calibra-
tion certificate. But, it was observed that some of the
laser beams have worse range accuracy than others.
Although many LiDAR system calibration procedures
have been developed in the past, outdoor calibration of
integrated GNSS/INS and multi-unit 3D laser scanners
is still an active area of research.

This research focuses on a potential calibration tech-
nique for a LiDAR system with several spinning multi-
beam laser scanners onboard a terrestrial mobile mapping
vehicle. The focus of the system calibration is to simul-
taneously estimate the mounting parameters relating
the different system components by minimizing the dis-
crepancy between conjugate linear and/or planar features
in overlapping point clouds derived from different drive-
runs. More specifically, the lever arm and boresight
angles relating the individual laser scanners and the
onboard GNSS/INS unit are derived using an iterative
calibration procedure.

2.2 Extraction of Road Characteristics

Mobile mapping systems can be used to acquire
various road characteristics (e.g., lane marking, lane
width, slope, curvature, clothoid, shoulder width, and
shoulder barriers) which are crucial factors for building
road digital maps, autonomous vehicle navigation, work
zone monitoring, and road safety inspection. Imagery
captured from MMSs can provide color information
which would ease the detection of features of interest
along a road surface. To detect roads/lane markings
from imagery, the localization of road borders or lane
markings is one of the commonly used approaches
(Kong et al., 2010). Wang, Hu, Chen, and Zhang (2017)
tracked and detected road lanes using change in the
gradient and shape of a lane (i.e., the perspective effect
on parallel lines). Lipski et al. (2008) utilized local
histograms to detect lane marking features from Hue,
Saturation, Value (HSV) top view images. Then, a lane
fitting algorithm was carried out to find a parameter
set for a lane model, i.e., the width and gradient of each
of the connected lane segments within the model. The
difficulty in feature extraction from imagery depends
on illumination conditions, camera exposure, obstacles,
and shadows. Hence, this report only focuses on feature
identification and extraction from LiDAR point clouds.

Before deriving the road characteristics, road surface
should be located and identified first. Han, Kim, Lee,

and Sunwoo (2012) detected road boundaries and obsta-
cles by extracting line segments from the raw point
cloud in polar coordinates and classifying those into
road and obstacle segments by analyzing the change in
roll and pitch angles of each segment. Kang, Rob, Suh,
and Song (2012) used Hough transform to detect curb
positions. Then, two Kalman filters were applied to
track the curb using a prediction model. At the end,
a probabilistic decision-making algorithm is applied to
accurately estimate the roadside curb position. Zhang
(2010) collected 3D point clouds with an LMS-200
SICK sensor mounted on top of a vehicle to detect
road surface and road surface edges by analyzing the
change in elevation. First, candidate road segments
are extracted from the elevation data using a local-
extreme-signal detector to identify the road surface edge.
Then, the candidate road segment is given a weight
based on the standard deviation of elevation and then,
classified using linear Support Vector Machine (SVM)
to decide whether the candidate is a road segment or
not. Finally, the curb is detected when the side of curb
is perpendicular to the road segment. Kumar, McElhinney,
Lewis, and McCarthy (2013) utilized a Riegl VQ-250 laser
scanner and an IXSEA LandINS GNSS/INS onboard
an MMS to collect point clouds and extract road sur-
faces using a combination of two modified versions of
the parametric active contour or snake model. The snake
model was initialized based on the navigation informa-
tion obtained from the GNSS/INS.

Transportation agencies apply highly reflective glass
beads to lane markings to improve their visibility at
night. Therefore, well-maintained retro-reflective lane
markings along the extracted road surface will be mani-
fested as high intensity points in LiDAR point cloud.
Although the material used for road markings can
provide high-intensity return, the reflected laser pulse
intensities fluctuate strongly according to the incident
angles and range between the laser beam firing point and
its footprint. Kumar, McElhinney, Lewis, and McCarthy
(2014) used a set of range-dependent thresholds to extract
lane markings. First, the road surface was extracted and
divided into blocks along the driving direction based
on lateral distance from the navigation data represent-
ing the trajectory. Then, different thresholds were applied
to different blocks for road marking extraction. Finally,
morphological operations and generic knowledge of the
dimensions of road markings were applied to complete
the shapes of extracted road markings and remove noise.
Yu, Li, Guan, Jia, and Wang (2015) proposed a multi-
segment threshold to mitigate the effects of intensity
variation of point clouds acquired from Riegl VMX-450.
First, road surface was partitioned into blocks along the
trajectory direction and then, each block was partitioned
into a set of segments according to the lateral distance
from the trajectory. Road markings in each segment were
detected using Otsu’s thresholding algorithm. Wrongly
classified points were recognized and removed by calc-
ulating their local point density. Finally, road mark-
ing points were classified into specific categories using
the following steps: (1) Euclidean distance grouping,

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/10 3



(2) voxel-based normalized cut segmentation strategy
for dividing a group including several types of mark-
ings, and (3) marking classification using trajectory infor-
mation, deep learning models, and Principal Component
Analysis (PCA). Guan et al. (2014) collected point clouds
from a Riegl VMX-450 MMS system and extracted
lane markings using multiple thresholds. First, a curb-
based strategy that relies on navigation data was applied
to extract points belonging to the road surface by detecting
elevation change along the road profile. Next, points
representing road surface were interpolated into a geo-
referenced intensity image. Then, road markings were
segmented using multiple thresholds that correspond to
different ranges as determined by point density. Finally,
a morphological operation was applied to complete the
shape of road marking and remove noise.

Cai and Rasdorf (2008) modeled road centerlines and
predicted their length using LiDAR and planimetric
road centerline data. The LiDAR data (with a point
density of approximately 0.031 pts/m2) was obtained
from North Carolina Floodplain Mapping Program
and the planimetric road centerline data was obtained
from the GIS unit of the North Carolina Department
of Transportation (NCDOT). A snapping and inter-
polation approach was used to obtain 3D points along
road centerlines. Holgado-Barco, González-Aguilera,
Arias-Sanchez, and Martinez-Sanchez (2014) used PCA
to analyze point clouds captured from an Optech
LYNX mobile mapper for deriving road parameters
(i.e., slope, vertical curves, and superelevations) from
segmented cross-sectional road surface extracted with
the help of trajectory and setting scan-angle threshold.
The slope and superelevation were computed using

PCA for each road segment. After deriving the slope,
characteristics of vertical curves were estimated. Holgado-
Barco, González-Aguilera, Arias-Sanchez, and Martinez-
Sanchez (2015) extracted lane markings and derived
the geometric design of a road (i.e., curvature and
azimuth). First, lane marking points were extracted by
setting intensity and scan-angle thresholds and the
points were segmented every 0.5 m using their time-
stamps. The centroid of each segment was regarded
as a point along the lane marking centerline. Next, the
lane marking centerline was used to derive their azimuth
for checking the horizontal alignment and curvature of
the road. Wang, Teoh, and Shen (2004) estimated road
slope and superelevation using point clouds from an
Optech Lynx SG1 system. First, the road surface was
segmented and partitioned into blocks along the driving
direction using navigation data. Then, the points from
a road surface partition were used to derive the slope
and superelevation.

None of the above research considers lane width esti-
mation, which is one of the key factors in road safety
inspection. Also, none of these approaches dealt with
the architecture of the used mobile mapping system and
laser scanners, and their impact on lane width estimation
and road segment characterization. The system calibra-
tion of MMSs and its impact on derived lane width
estimates is also an issue that has not been addressed.
Moreover, most of these studies validate the results only
once for a single test area. In this report, an outdoor
multi-unit LiDAR calibration procedure is introduced.
Then, the proposed lane width estimation strategy is
applied to derive the lane width using point clouds
acquired by the calibrated MMS.
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3. SYSTEM ARCHITECTURE OF THE MMS USED
IN THIS RESEARCH

3.1 System Specifications and Synchronization

The test datasets used in this research are captured
by a designed mobile mapping platform, which includes
a Velodyne VLP-16 laser scanner, Velodyne HDL-32E
laser scanner, FLIR Flea-2G camera, and SPAN-CPT
GNSS/INS, as shown in Figure 3.1. The HDL-32E con-
sists of 32 radially oriented laser rangefinders that are
aligned from +10.67u to -30.67u. In total, the vertical
field of view (FOV) is 41.34u. Also, the whole unit can
rotate to achieve a 360u horizontal FOV. The point cap-
ture rate is around 700,000 points per second (Velodyne,
2016a). The VLP-16, that has 16 radially oriented laser
rangefinders, is a lite version of the HDL-32E. The ver-
tical FOV is from -15u to +15u and the horizontal FOV
is 360u. The point capture rate is around 300,000 points
per second (Velodyne, 2016b). The navigation system
adopted in this research is the SPAN-CPT that com-
bines GNSS and Inertial Measurement Unit (IMU) hard-
ware inside a single enclosure. The GNSS collection
rate is 20 Hz and the IMU measurement rate is 100 Hz
(NovAtel, 2014). The FLIR Flea-2G camera is used as
an auxiliary sensor in this study and is directly georefer-
enced by the SPAN-CPT unit. The FLIR Flea-2G camera
has a maximum image resolution of 5 MP and has built-in
ports for both triggering and strobe feedback signals.

In order to derive a directly georeferenced LiDAR
point cloud, the SPAN-CPT supplies sequentially pre-
cise time pulses, known as pulse-per-second (PPS)
signals, which gives the ability to generate a time-tagged
point cloud. Furthermore, the SPAN-CPT provides a

navigation message, also known as the ‘‘GPRMC’’
message (including information related to position,
rotation, and GPS time), which is transmitted over a
dedicated RS-232 serial port and is received by the
LiDAR unit via the Velodyne interface box in the form
of serial data. This synchronization process is illu-
strated in Figure 3.2.

The accuracy of the derived LiDAR point cloud from
the utilized platform through error propagation can be
estimated. The SPAN-CPT can attain an accuracy of
less than 2 cm in position, and an accuracy of 0.008u
and 0.035u in the roll/pitch and heading, respectively
(NovAtel, 2014). The Velodyne laser unit has a range
accuracy of 2 cm. These values, along with the nominal
standard deviation of the estimated system mounting
parameters, are used to derive the expected accuracy in
the computed mapping frame coordinates using the
LiDAR Error Propagation calculator developed by
Habib et al. (2006), as shown in Figure 3.3. The calcu-
lator suggests that we should expect an accuracy of
around 2–3 cm at a range of 30 m. Since the accuracy
of lane width estimates would directly depend on the
LiDAR point cloud accuracy, the accuracy of derived
lane width can be expected around 3 cm.

3.2 Portability of the Used MMS

The designed mapping system for this research is highly
portable. Firstly, it can be easily mounted on different
mobile platforms, such as cars or trucks. The initial
deployment time is usually around 30 mins. Moreover,
the mapping system is also flexible in terms of the
involved components (laser scanners and cameras),

Figure 3.1 Mobile mapping system used in this research.
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i.e., these units are detachable and can be easily replaced
with an alternate unit. Note that in all such circum-
stances, the MMS needs to be re-calibrated in order to

account for any subtle or significant change in mounting
parameters. Some instances of deployment of the MMSs
are shown in Figure 3.4.

Figure 3.3 LiDAR Error Propagation calculator.

Figure 3.2 Synchronization process and data storage for the mobile mapping system.
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4. CONCEPTUAL BASIS OF LIDAR POINT
POSITIONING

4.1 Single LiDAR Unit Point Positioning

A typical LiDAR system consisting of a spinning
multi-beam LiDAR unit could involve 3 coordinate
systems (i.e., mapping frame, IMU body frame, and
laser unit frame). A given point, I, acquired from a
mobile mapping system can be reconstructed in the
mapping coordinate system using Equation 4.1, which
is graphically illustrated in Figure 4.1. The vector and
matrix notations used in this report are as follows:

N rb
a denotes the coordinates of point ‘a’ relative to point ‘b’

in the coordinate system associated with point ‘b’.

N Rb
a denotes the rotation matrix that transforms a vector

defined relative to the coordinate system ‘a’ into a vector

defined relative to the coordinate system ‘b’.

For the laser unit frame of a spinning multi-beam
laser scanner, origin is defined at the laser beam firing
point and the z-axis is along the axis of horizontal
rotation of the laser unit. For a Velodyne system, each
laser beam is fired at a fixed vertical angle, a; the hori-
zontal angle, b, is determined based on the rotation of
unit; and the range, r, is defined by the distance between
firing point and its footprint. So, the coordinates of a
3D point relative to the Velodyne laser-unit coordinate

system, rlu
I ð Þt , is defined by Equation 4.2. An IMU body

frame should be considered when mobile systems are

Figure 3.4 Example deployments of the MMS.
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equipped with a GNSS/INS navigation unit. For mobile

systems, the lever arm, rb
lu, and boresight matrix, Rb

lu,

between laser unit and body frame coordinate systems is
rigidly defined. The GNSS/INS integration provides the
time dependent position, rm

b ð Þt , and rotation, Rm
b ð Þt , rela-

ting the mapping frame and IMU body frame coordinate
systems, according to the optimized solution from all the
available GNSS and inertial measurements.

rm
I ~rm

b tð ÞzRm
b tð Þrb

luzRm
b tð ÞRb

lurlu
I tð Þ ð4:1Þ

rlu
I tð Þ~

x

y

z

0
B@

1
CA~

r tð Þ cos a(t) cos b(t)

r tð Þ cos a(t) sin b(t)

r tð Þ sin a(t)

0
B@

1
CA ð4:2Þ

4.2 Multi-LiDAR Unit Point Positioning

In case of a multi-unit LiDAR system, the points
captured using each of the laser scanners can be recon-
structed using Equation 4.1 with the mounting para-
meters relating each laser unit directly to the GNSS/
INS navigation unit. An alternative approach for 3D
point cloud reconstruction using a multi-unit LiDAR

system is provided in Equation 4.3, where a reference
sensor and slave sensors are considered. An illustration
of such a multi-unit LiDAR system is shown in Figure 4.2.

In Equation 4.3, the terms rb
lur and Rb

lur are the lever

arm and boresight matrix, respectively, relating the
IMU body frame and the reference laser unit coordinate
systems. The extra terms considered in Equation 4.3,

rlur
luj and Rlur

luj are the lever arm and boresight matrix,

respectively, rigidly relating the reference sensor, lur,
and the slave sensor, luj. One can introduce one or more
slave sensors, each one of them rigidly related to the
reference sensor by a lever arm and boresight matrix.

rm
I ~rm

b tð ÞzRm
b tð Þrb

lurzRm
b tð ÞRb

lurr
lur
luj

zRm
b t Rb

lurR
lur
luj r

luj
I t 4:3ð Þ ð Þ ð Þ

Here, the model relating a reference sensor to the
IMU body frame and the other slave sensors to the
reference sensor is preferred over the model where each
sensor is individually related to the IMU body frame.
This is due to the fact that the former model allows to
derive the mounting parameters relating the slave sensors
to the reference sensor without the need for GNSS/INS
position and orientation information, thus facilitating an
indoor calibration for the mobile mapping system.

Figure 4.1 Illustration of point positioning of a directly geo-referenced single-unit LiDAR system.
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5. PROPOSED MULTI-UNIT LIDAR SYSTEM
CALIBRATION PROCEDURE

5.1 Methodology of Proposed Multi-unit LiDAR System
Calibration Procedure

In this section, we propose a strategy to estimate the
mounting parameters using geometric tie features (e.g.,
planar, and linear/cylindrical features). The conceptual
basis for multi-unit LiDAR system calibration is to
minimize the discrepancies among conjugate points,
linear features, and/or planar features obtained from
different sensors and/or drive-runs. After collecting
data from several drive-runs, a 3D point cloud relative
to a global reference frame will be derived using the
GNSS/INS unit position and orientation, and initial
estimates for the mounting parameters. Then, conjugate
features are identified and extracted from the recon-
structed point cloud. Finally, an iterative multi-unit
system calibration with weight modification is proposed
to derive the mounting parameters based on the mini-
mization of normal distance between conjugate features.

5.1.1 Representation Scheme and Feature Extraction

Owing to the irregular distribution of LiDAR points,
conjugate point pairs cannot be used since there is no
accurate point-to-point correspondence. Instead, conju-
gate linear/cylindrical and planar features, such as build-
ing façades, ground patches, light poles, flag poles, and
lane markers, are used and these can be directly extra-
cted from overlapping areas within the drive-runs. How-
ever, conjugate feature extraction from several drive-
runs could be time-consuming and inefficient, especially
when the initial estimates for mounting parameters used
to reconstruct the 3D point cloud are considerably inac-
curate. To facilitate automated identification of conju-
gate features in such cases, specifically designed calibra-
tion boards covered by highly reflective surfaces, that
could be easily deployed and set up in outdoor environ-
ments, are used in this study, as shown in Figure 5.1.
The representation scheme and extraction of various

linear and planar features from LiDAR point cloud
is discussed in the forthcoming subsections.

5.1.1.1 Linear Features. Any linear feature appearing
in a LiDAR scan is represented by a sequence of pseudo-
conjugate points lying along the feature. Here, the term
‘‘pseudo-conjugate points’’ refers to points that are not
distinctly identifiable in different LiDAR scans but are
known to belong to the same feature. Note that points
along a linear feature are labeled the same, thus denot-
ing that the points are indistinct in nature, i.e., the only
identification of a point is by the feature that it belongs
to and there is no assumption about having conjugate
points among different LiDAR scans.

In outdoor calibration, various linear features can be
extracted and used for calibration, such as flag poles,
light poles, physical intersections of neighboring planar
features, and so on. Features like flag poles or light
poles are extracted from LiDAR data by manually
specifying the two end points for each feature. A buffer
radius is set to define a cylinder around the linear feature

Figure 5.1 Calibration test field.

Figure 4.2 Illustration of point positioning of a directly geo-referenced multi-unit LiDAR system.
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of interest, as shown in Figure 5.3. The buffer radius is
determined based on the accuracy of initial estimates of
the mounting parameters, i.e., a higher buffer radius
value is used in case of highly inaccurate initial estimates,
and vice-versa. Then, a line-fitting is done for the points
lying within this cylindrical buffer and finally, the points
that lie within a normal distance threshold from the
best-fitting line are extracted. Moreover, points belong-
ing to intersections of neighboring planar features are
extracted by firstly, determining the best-fitting planes
for each of the two planar surfaces. Then, their inter-
section line is determined and all the points lying within
a normal distance threshold from this line are extracted.

5.1.1.2 Planar Features. Any planar feature appearing
in a LiDAR scan is represented by a sequence of pseudo-
conjugate points lying along the feature. Note that LiDAR
points belonging to each planar feature will have the same
labels (which is specific to the feature). In this study, we
use highly reflective boards, ground patches, wall patches,
and other surfaces as planar features for calibration. The
highly reflective sign boards can be easily identified from
intensity data, as shown in Figure 5.2, where the points
belonging to these boards exhibit higher intensity values
compared to other LiDAR points. Firstly, a pre-defined
threshold is set to extract high-intensity points. To
avoid the extraction of high-intensity points belonging
to objects other than these boards, an approximate pre-set
region is manually set as seed points for each board. Then,
a distance-based region growing technique is adopted to
group the high intensity boards. Finally, a plane-fitting
is done for these points, and the points lying within
a normal distance threshold from the best-fitting plane
are extracted. Again, the normal distance threshold is
determined based on the accuracy of initial estimates
of the mounting parameters. Other planar features, such
as ground patches, wall patches, or other planar sur-
faces, are extracted by manually defining two diagonally

opposite corners, as shown in Figure 5.3. A bounding
box is constructed around the planar feature of interest
by adding a buffer value (in X, Y, and Z directions) to
the coordinates of diagonally opposite corners. Again,
a plane-fitting is done for the points contained inside the
box, and the ones lying within a normal distance thresh-
old from the best-fitting plane are extracted.

5.1.2 Weight Modification and Multi-Sensor System
Calibration

In the proposed calibration method, conjugate fea-
tures are extracted from the point clouds of different
sensors and several drive-runs. The mounting para-
meters of each sensor are derived by minimizing the
discrepancies among conjugate features (lines/planes) in
overlapping drive-runs. Each pairing between conjugate
features will result in a misclosure vector, which would
be random (?e ) in case of a conjugate point pair, as
given by Equation 5.1. However, a pairing between
non-conjugate points along corresponding planar or
linear/cylindrical features would additionally introduce

?
a non-random component (D ) in the misclosure vector,

?
as given by Equation 5.2. This (D would lie along the
planar surface or along the linear feature/axis of cylin-
der, respectively, as illustrated in Figure 5.4. Therefore,
a modified weight matrix, P0, is introduced to eliminate
the non-random component of the misclosure vector,
?
D , from the LSA cost function, as given by Equation
5.3 (Renaudin et al., 2011). To derive this matrix, a
local coordinate system (UVW) is established first using
the LiDAR points belonging to the reference LiDAR
scan for the feature. The reference LiDAR scan for a
feature is the one consisting of the highest number of
points belonging to the feature, which in turn enhances
the reliability of the derived local coordinate system.
For linear/cylindrical features, the U axis is aligned

Figure 5.2 Intensity data of a point cloud obtained from a single drive-run.
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along the line/axis of cylinder and V and W axes are
arbitrarily chosen to satisfy the orthogonality of the
UVW triad. For planar features, W axis is aligned along
the normal vector of the plane in question, and U and
V axes are arbitrarily chosen along the planar feature.
An illustration of the local coordinate systems for

the two types of features is shown in Figure 5.5. Then,

a rotation matrix, RUVW
XYZ , relating the local and map-

ping coordinate systems is derived according to the
components of the vectors, U, V, and W relative to the
mapping frame. The weight matrix, PXYZ, in the map-
ping coordinate system is transformed to a weight

Figure 5.3 Illustration of semi-automatic feature extraction.

Figure 5.4 Discrepancy vector between non-conjugate points along corresponding (a) planar, and (b) linear features.

Figure 5.5 Illustration of local coordinate systems for (a) planar and (b) linear features.
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matrix, PUVW, in the local coordinate system accord-
ing to the law of error propagation (Equation 5.4).
The weight matrix, PUVW, is modified by assigning a
zero weight to the elements corresponding to the direc-

?
tion of D . More specifically, the non-random compo-

?
nent of the misclosure vector (D ) can be eliminated
from the LSA minimization target function by setting a
zero weight in the corresponding direction. The direc-

?
tion of (D ) for a linear/cylindrical feature is along the U
axis. Therefore, the modified weight matrix, PUVW

0 , has
zero weight in all the elements pertaining to the U axis

?
(Equation 5.5). Similarly, the direction of (D ) for a
planar feature is along the U and V axes. So, all the
elements pertaining to the U and V axes are assigned a
zero weight (Equation 5.6). The modified weight matrix,
P0XYZ, in the mapping coordinate system is derived using
Equation 5.7. Finally, the obtained modified weight
matrix, P0XYZ, is applied to the condition in Equation 5.2
to account for pseudo-conjugate points along corre-
sponding features within overlapping drive-runs.

Points : rm
I (drive{run1){rm

I (drive{run2) e! ð5:1Þ

Planar=LinearFeatures : rm
I (drive{run1)

{rm
J (drive{run2)~D

!
z e! ð5:2Þ

P
0
D
?

~P0
dx

dy

dz

2
64

3
75~0 ð5:3Þ

PUVW~RUVW
XYZ PXYZRUVW

XYZ T

~

PU PUV PUW

PVU PV PVW

PWU PWV PW

2
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3
5 ð5:4Þ

Linear=Cylindrical Feature:

P0UVW~

0 0 0

0 PV PVW
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2
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3
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PlanarFeature: P0UVW ~

0 0 0

0 0 0

0 0 PW

2
64

3
75 ð5:6Þ

P0XYZ~RUVW
XYZ TP0UVW RUVW

XYZ ð5:7Þ

5.1.3 Contribution of Point-Pairings toward System
Calibration

Now, the contribution of pairings toward calibration
is analyzed for linear features and planar features. One
should note that each point pair serves two purposes—
first is the derivation of 3D mapping frame coordinates
of the involved points and second is the estimation of
system calibration parameters. So, in order to deter-
mine the contribution from a pairing toward system
calibration, we compute the point definition redun-
dancy, i.e., the redundancy for the derivation of the
3D mapping frame coordinates of LiDAR points, as a
result of LiDAR-to-LiDAR pairings. One should note
that in case of a LiDAR point, there are no additional
unknowns involved in computing its 3D mapping frame
coordinates apart from the system parameters.

5.1.3.1 Linear Feature-Based Pairings. As discussed
before, a linear feature is represented by a sequence of
pseudo-conjugate points along the feature. Each pseudo-
conjugate point pairing will result in a random misclo-
sure vector ( ?e ) along with a non-random misclosure

?
vector (D ), as shown in Figure 5.4 (a) and expressed
mathematically in Equation 5.2.

In this case, the discrepancy of the resultant point
pair should be minimized only along the two directions
that are normal to the axial direction of the linear
feature, thus resulting in two equations from each
pseudo-conjugate point pair. This is achieved by apply-
ing a modified weight matrix to the point pair which
nullifies the component of their discrepancy along the
axial direction of the linear feature. This modified
weight matrix is derived according to the estimated
direction of the linear feature based on the points from
a reference LiDAR scan that belong to this feature
(Renaudin et al., 2011). The scan consisting of most
number of points belonging to a feature is set as the
reference scan as it would result in the most reliable
estimate of the feature direction.

Every sensor and every drive-run will give lead to a
new version for each feature. For instance, a feature
extracted from m different sensors and n different drive-
runs will lead to mn separate versions for this feature.

mnð Þmn{1
Then, there can be a total of pairings for each

2

feature. However, the discrepancy observations correspond-
ing to these pairings will not be independent. Hence, in
this research, one of the versions is selected as reference to
be paired with all the other versions of that feature from
other sensors and/or drive-runs. So, there would be (mn21)
linearly independent LiDAR-to-LiDAR pairings for
each feature. A pseudo-conjugate LiDAR-to-LiDAR
point pairing will give 2 equations and no unknowns,
thus leading to a point definition redundancy of 2.

5.1.3.2 Planar Feature-Based Pairings. A planar fea-
ture is also represented by a sequence of pseudo-conjugate
points along the feature. Again, each pseudo-conjugate
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point pairing will result in a random misclosure vector (?e )
?

along with a non-random misclosure vector ( D ), as shown
in Figure 5.4 (b) and stated before in Equation 5.2. So, the
discrepancy of the resultant point pair is minimized only
along the direction normal to the planar surface, thus
resulting in only one equation from each pseudo-conjugate
point pair. Again, this is achieved by deriving a modified
weight matrix by estimating the normal direction of the
planar surface based on the points from the correspon-
ding reference LiDAR scan that belong to this feature
(Renaudin et al., 2011). This matrix would nullify the
components of the discrepancy along the normal direc-
tion of the planar feature.

Let us consider a planar feature captured from m dif-
ferent sensors and n different drive-runs. Again, there
will be a total of (mn21) independent LiDAR-to-LiDAR
pairings. A pseudo-conjugate LiDAR-to-LiDAR point
pairing will lead to 1 equation and no unknowns, which
implies a point definition redundancy of 1.

5.1.4 Implementation of the Proposed Iterative
Calibration Strategy

In this section, we summarize the proposed strategy
to simultaneously calibrate the mounting parameters
of the spinning multi-beam laser scanners onboard a
mobile platform using tie points and tie features (e.g.,
planar and linear features). After collecting data from
several drive-runs/flight lines, a LiDAR-based 3D point
cloud relative to a global reference frame will be derived
using the GNSS/INS unit position and orientation, and
initial estimates for the mounting parameters. Then,
conjugate features are identified and extracted from the
reconstructed point cloud. The mounting parameters
for both reference and slave laser units can be derived
by minimizing the discrepancies among the conjugate
features arising from the pairings between the different
versions of such features. However, when the initial
estimate of mounting parameters is inaccurate, the
initial point cloud would be inaccurate, as shown in

Figure 5.6. Thus, the estimated modified weight matrix
would be imprecise which would affect the accuracy of
the derived mounting parameters. Hence, this research
proposes an iterative calibration procedure. Firstly, the
mounting parameters are derived through minimizing
the discrepancies among extracted features through the
weight modification process. Then, the points along the
extracted features are re-generated using the newly
estimated mounting parameters and the discrepancy
among conjugate features is minimized again using a
newly defined modified weight matrix. The above steps
are repeated until the change in the estimates of the
mounting parameters is below a predefined threshold.

The mounting parameters that are derived in multi-
sensor calibration are the lever arm (DX,DY) and
boresight angles (Dv,Dw,Dk) for all the sensors and the
lever arm DZ for all but the reference sensor. The lever
arm DZ for the reference sensor cannot be estimated in
the calibration procedure since any change in DZ will
not introduce discrepancies among the different versions
of the same feature captured from different sensors and/
or drive-runs. It would only result in a shift of the point
cloud in the vertical direction as a whole. So, DZ for
the reference sensor is fixed during the calibration pro-
cedure. It can either be manually measured or deter-
mined using vertical control (such as, horizontal planar
patches with known elevation).

5.2 Experimental Results of Multi-unit LiDAR System
Calibration

To illustrate the performance and feasibility of the
proposed calibration strategy, three experiments are con-
ducted in this section. The datasets used for evaluating
the performance of the proposed calibration strategy are
captured by a designed platform which carries either
Velodyne HDL-32E or VLP-16 laser scanners together
with a SPAN-CPT direct geo-referencing unit. In the first
experiment, a calibration dataset is utilized to demon-
strate the performance of the calibration strategy and the

Figure 5.6 Intensity data of a point cloud obtained from a single drive-run using inaccurate initial estimates of mounting parameters.
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quantitative as well as qualitative results are provided.
In the second experiment, a qualitative evaluation is pro-
vided by presenting objects from highway dataset to show
the alignment between point clouds from drive-runs in
different direction. In the third experiment, a repetitive
testing is provided to show the feasibility of proposed
calibration strategy. Mounting parameters were derived
for the mobile mapping systems used to capture six
datasets on different dates and using different sensors.
Those six datasets would be used further for lane width
evaluation in the next chapter.

5.2.1 Performance Evaluation from Calibration Dataset

For calibration dataset, specially designed hut-shaped
target boards are also deployed, with their ridges
oriented perpendicular to each other. These boards,
along with the ground patches and light poles, would
ensure enough control along all the directions (i.e., X,
Y, Z-directions). In this experiment, eight drive-runs,
with different directions and lateral distance between
them, were made around the calibration primitives at
an approximate speed of 4 miles/hr. With eight drive-
runs and two laser units, there is a total of 16 versions

for each of the features used for the calibration pro-
cedure. Figure 5.7 (a) shows the calibration test field
and Figure 5.7 (b) shows the configuration of drive-
runs and target primitives, where PB denotes highly
reflective planar boards, PV denotes the planar hut
surfaces, G denotes ground patches, L denotes light poles,
and LH denotes linear hut ridges. Here, the HDL-32E1
and HDL-32E2 scanners are taken as reference and
slave units, respectively.

First, all the points are reconstructed using initial
estimates of the mounting parameters, which are obtained
from manual measurements/estimates for the lever-arm
and boresight angles between SPAN-CPT and refer-
ence laser unit, and between the reference and slave
laser units. Then, the semi-automatic feature extraction
is executed to obtain the points for planar features (i.e.,
high reflective boards, ground patches, and planar
patches of huts) and for linear/cylindrical features
(i.e., light poles and ridge of huts) from all the data-
sets separately. Finally, the proposed multi-LiDAR
unit calibration procedure is applied to obtain the mount-
ing parameters for both the sensors simultaneously,
using point pairs from conjugate features in the
HDL-32E1 and HDL-32E2 datasets. The accuracy of

Figure 5.7 Calibration test field: (a) imagery, and (b) configuration of drive-runs and calibration primitives.
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calibration procedure is evaluated by monitoring the
a-posteriori variance factor after every iteration of the
least squares adjustment (LSA) procedure and also,
the RMSE of the normal distance of points belonging
to a planar or linear/cylindrical feature from its best-
fitting plane or line, respectively.

The initial approximations of these mounting para-
meters and the final results (along with their standard
deviations) from the multi-sensor calibration for HDL-
32E1 as well as HDL-32E2 sensors are listed in Table 5.1.
One should note that the lever arm DZ for the reference
sensor (here, HDL-32E1) is fixed during the calibration
procedure, which is marked in red color in Table 5.1.
The correlation matrix for the estimated mounting
parameters of the two sensors is also listed in Table 5.2,
which indicates that none of the parameters are highly
correlated. The average normal distance between
conjugate features in overlapping drive runs after
calibration can be quantified by the square root of
the a-posteriori variance factor (ŝo), which is 1.72 cm
in this case. This is better than the expected accuracy of
around 3 cm according to the LiDAR Error Propaga-
tion Calculator. Furthermore, through the qualitative
evaluation depicted in Figure 5.8, one can observe a
significant improvement of boards, ground patches,
and light poles after calibration. The ŝo value of the
LSA procedure and the RMSE of normal distance of

points from best-fitting plane/line for extracted fea-
tures after every iteration are listed in Table 5.3.

It can be seen from Table 5.3 that the RMSE for
each feature is consistently improving after every itera-
tion. The final RMSE for all the calibration primitives
can be seen to be about 1–4 cm. One should note that
the designed boards have a thickness of about 1 cm, so
their RMSE can never be less than a centimeter. These
qualitative and quantitative results indicate that the
proposed calibration strategy is efficient and accurate.

5.2.2 Quantitative Evaluation from Highway Dataset

A highway dataset captured on 2017/09/19 with
drive-runs aligned in different directions (i.e., south-
bound and north-bound) is used to check the alignment
between the point clouds obtained from different sensors
and drive-runs. From the highway dataset, a bridge
and the barriers used to channelize devices are extracted
to check the alignment, as shown in Figure 5.9. In
Figure 5.9 (a), the point clouds from left and right sensors
in south-bound drive-run as well as left and right sensors
in north-bound drive-run are colored in green, orange,
blue, and pink, respectively. From the Figure 5.9 (b),
one can note that there is a discrepancy of around 6 cm
between the point clouds acquired in south-bound and
north-bound drive-runs. However, the point clouds from

TABLE 5.1
Mounting parameters of HDL-32E1 and HDL-32E2 before and after multi-sensor calibration

ÄX (m) ÄY (m) ÄZ (m) Äù (deg) Äj (deg) Äê (deg)

HDL-32E1 LiDAR Unit Mounting Parameters (rb
HDL32E1)(Rb

HDL32E1)

Initial 0.45 0.2 0.32 -5 0 -50

Final 0.487 0.219 0.32 -5.898 0.645 -53.498

Standard Deviation 0.0064 0.0063 0 0.0095 0.0100 0.0134

HDL-32E2 LiDAR Unit Mounting Parameters (rHDL32E1
HDL32E2) (RHDL32E1

HDL32E2)

Initial -0.289 -0.344 0 0 0 -15

Final -0.281 -0.414 -0.005 -0.802 -0.109 -12.541

Standard Deviation 0.0056 0.0054 0.0039 0.0094 0.0104 0.0126

TABLE 5.2
Correlation matrix of mounting parameter estimates from multi-sensor calibration

ÄX1 ÄY1 ÄZ1 Äù1 Äj1 Äê1 ÄX2 ÄY2 ÄZ2 Äù2 Äj2 Äê2

ÄX1 1.000 0.061 0.000 0.021 0.099 0.146 0.163 0.120 0.059 0.007 0.073 0.274

ÄY1 0.061 1.000 0.000 0.003 0.119 0.309 0.016 0.097 0.286 0.005 0.016 0.058

ÄZ1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Äù1 0.021 0.003 0.000 1.000 0.047 0.008 0.038 0.015 0.217 0.364 0.019 0.008

Äj1 0.099 0.119 0.000 0.047 1.000 0.304 0.018 0.000 0.242 0.067 0.001 0.025

Äê1 0.146 0.309 0.000 0.008 0.304 1.000 0.046 0.038 0.079 0.001 0.010 0.046

ÄX2 0.163 0.016 0.000 0.038 0.018 0.046 1.000 0.056 0.060 0.058 0.014 0.067

ÄY2 0.120 0.097 0.000 0.015 0.000 0.038 0.056 1.000 0.134 0.030 0.121 0.402

ÄZ2 0.059 0.286 0.000 0.217 0.242 0.079 0.060 0.134 1.000 0.171 0.389 0.071

Äù2 0.007 0.005 0.000 0.364 0.067 0.001 0.058 0.030 0.171 1.000 0.040 0.017

Äj2 0.073 0.016 0.000 0.019 0.001 0.010 0.014 0.121 0.389 0.040 1.000 0.196

Äê2 0.274 0.058 0.000 0.008 0.025 0.046 0.067 0.402 0.071 0.017 0.196 1.000
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the left and right sensors are aligned well in a single
drive-run. One should note that this discrepancy between
different drive-runs is not clearly identifiable when we
inspect a large scale object (e.g., bridge, as shown in
Figure 5.9 (c-d)).

5.2.3 Repetitive Testing of Calibration Procedure

The mobile mapping system was mounted on differ-
ent cars for every mission. To ensure the accuracy of the
acquired point clouds, the calibration procedure was

carried out every time before proceeding with acquiring
data along a road. There are six datasets used in the
next chapter for lane width estimation. Two datasets
were collected for an interstate highway; three datasets
were collected for a U.S. highway; and one dataset was
collected for a main arterial. These six datasets are
captured on different dates and using different sensors
(i.e., HDL-32E or VLP-16). The mounting parameters
derived from the introduced multi-unit LiDAR system
calibration procedure for each of the six datasets are
listed in Table 5.4.

Figure 5.8 Qualitative evaluation of some of the extracted boards, ground patches, and light poles (a) before calibration, and
(b) after calibration.
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TABLE 5.3
HDL-32E1 + HDL-32E2 multi-sensor calibration: A-posteriori variance factor (�̂o) and RMSE of plane/line fitting

Number of

LiDAR Points Before Calibration Calibration Iteration 1 Calibration Iteration 2 Calibration Iteration 3

^so (m) 0.0394 0.0172 0.0172

RMSE (m)

Feature ID Reflective Boards

Board 0

Board 1

Board 2

Board 3

Board 4

Board 5

Board 6

Board 7

Ground 0

Ground 1

Ground 2

Ground 3

Surface 0

Surface 1

Surface 2

Surface 3

Surface 4

Surface 5

Surface 6

Surface 7

Ridge 0

Ridge 1

Ridge 2

Ridge 3

Pole 0

Pole 1

Pole 2

20,240

78,063

105,320

47,323

1,022

664

4,466

10,464

0.304

0.333

0.252

0.335

0.112

0.120

0.157

0.164

0.018

0.025

0.026

0.028

0.010

0.012

0.019

0.015

0.020

0.028

0.028

0.030

0.013

0.016

0.020

0.017

0.020

0.028

0.028

0.030

0.013

0.016

0.020

0.017

Ground Patches

802,878

956,653

988,163

1,209,071

0.164

0.172

0.155

0.175

0.016

0.015

0.017

0.016

0.016

0.014

0.016

0.016

0.016

0.014

0.016

0.016

Hut Surfaces

67,644

40,461

69,739

89,144

77,916

97,395

77,329

50,113

0.253

0.270

0.243

0.288

0.233

0.228

0.275

0.238

0.029

0.036

0.023

0.031

0.031

0.034

0.030

0.023

0.030

0.038

0.023

0.031

0.032

0.037

0.031

0.024

0.030

0.038

0.023

0.031

0.032

0.037

0.031

0.024

Hut Ridges

3,775

5,308

7,660

4,498

0.162

0.184

0.190

0.166

0.028

0.019

0.017

0.017

0.020

0.018

0.018

0.017

0.020

0.018

0.018

0.017

Flag Poles

41,810

33,929

39,361

0.267

0.257

0.254

0.028

0.029

0.027

0.032

0.033

0.031

0.032

0.033

0.031
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Figure 5.9 Highway objects, (a) front view of barriers channelizing devices colored by different sensors and drive-runs, (b) top
view of barriers channelizing devices colored by different sensors and drive-runs, (c) front view of bridge colored by different
sensors and drive-runs, and (d) top view of bridge colored by high.
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6. LANE WIDTH ESTIMATION STRATEGY

6.1 Methodology of Lane Width Estimation

The proposed methodology for lane width estima-
tion proceeds according to three major steps: (1) road
surface and lane marking extraction, (2) derivation of
lane marking centerline, and (3) lane width estimation.
First, the road surface is extracted with the assistance
of vehicle trajectory data. Next, lane markings are
extracted along the road surface by identifying high-
intensity points. Since lane markings have a certain
thickness, their centerline is derived for estimating the
lane width. The flowchart of the proposed strategy is
shown in Figure 6.1. The following subsections intro-
duce the technical details of these steps.

6.1.1 Road Surface and Lane Marking Extraction

The proposed strategy focuses on lane width estima-
tion along the driving lane. In this section, we introduce
a strategy to extract the road surface and lane marking
on the road surface along the driving lane. The trajectory

data records the information of vehicle position and
orientation, which is defined by the position and
orientation of the IMU body frame of the GNSS/INS
navigation system. Therefore, the LiDAR point cloud
pertaining to the road surface can be derived with the
help of the trajectory data and the IMU height above
road surface. First, road surface points are extracted
by setting a height threshold (hIMU) and a threshold
(dw) for lateral distance from the vehicle trajectory, as
shown in Figure 6.2. The height threshold (hIMU) is the
expected normal distance from the IMU body frame to
road surface. It can be derived automatically by first,
randomly selecting a trajectory data point and search-
ing the LiDAR point (Pi) with the closest (X, Y)
coordinates and the least Z-coordinate. Then, a k-nearest
neighbor search is applied to Pi for defining a road sur-
face. A plane-fitting is done to estimate the parameters
of the road surface. Finally, the height threshold can be
derived from the normal distance between the trajectory
data point to the fitted plane. Since the road surface
may not be flat, a pre-determined buffer for the height
threshold (hIMU) is necessary. The height buffer is

TABLE 5.4
Mounting parameters for the datasets from the multi-unit LiDAR system calibration procedure

Date

Mounting Parameters

DX (m) DY (m) DZ (m) Dv (u) Dj (u) Dk (u)

Interstate Highway

2016/11/05 HDL32E-2 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.471 0.2057 0.3000 -5.868 -0.1548 -54.0072

VLP16-1 Calibration Parameters RHDL32E2
VLP161 rHDL32E2

VLP161

-0.271 -0.376 -0.073 -2.092 -4.161 22.014

2017/05/02 HDL32E-2 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.470 0.196 0.319 -6.110 0.488 -56.728

HDL32E-3 Calibration Parameters RHDL32E2
HDL32E3rHDL32E2

HDL32E3

-0.246 -0.384 -0.003 -0.734 0.1054 -111.320

U.S. Highway

2016/11/30 HDL32E-2 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.476 0.201 0.300 -6.047 -0.095 -58.870

VLP16-1 Calibration Parameters RHDL32E2
VLP161 rHDL32E2

VLP161

-0.246 -0.400 -0.089 -1.581 -4.274 26.810

2017/02/11 HDL32E-2 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.466 0.178 0.324 -6.049 0.456 -63.961

HDL32E-3 Calibration Parameters RHDL32E2
HDL32E3rHDL32E2

HDL32E3

-0.218 -0.378 -0.004 -1.464 -4.425 -105.495

2017/08/17 HDL32E-4 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.446 0.204 0.322 -5.692 0.941 -53.531

HDL32E-5 Calibration Parameters RHDL32E4
HDL32E5rHDL32E4

HDL32E5

-0.286 -0.375 -0.009 -0.696 -0.478 -12.616

Main Arterial

2016/10/11 HDL32E-2 Calibration Parameters Rb
HDL32E2rb

HDL32E2

0.425 0.191 0.300 -5.839 -1.460 -47.953

VLP16-1 Calibration Parameters RHDL32E2
VLP161 rHDL32E2

VLP161

-0.298 -0.336 -0.009 -3.537 -3.147 15.996

Note: HDL32E-2, HDL32E-3, HDL32E-4, and HDL32E-5 denote different LiDAR sensors of the same model.
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illustrated in Figure 6.2. The lateral distance threshold
(dw) is defined for both sides of the trajectory data
across its direction and is used to only extract the road
surface for the driving lane. When the normal distance
between a LiDAR point and the trajectory projec-
tion onto the road surface is smaller than dw as well
as its height is within the height buffer, the LiDAR
point is regarded as a road surface point, as shown
in Figure 6.1 (b). After extracting the road surface, we
proceed to extract lane markings. An intensity thresh-
old (ThI) is pre-defined to extract points represent-
ing lane markings. When the intensity of the extracted
road surface points is larger than ThI, they are regarded
as potential candidate lane markings, as illustrated in
Figure 6.1 (c). One should note that we use a constant
pre-defined value for the intensity threshold instead of
an adaptive value because the laser beams contribut-
ing toward the lane markings along the driving direc-
tion would be homogeneously distributed and hence,
the intensity value from lane markings will be homo-
geneous along the entire trajectory.

6.1.2 Derivation of Lane Marking Centerline

Since lane markings are strips having a finite width,
it is imperative to derive their centerline for lane width
estimation. The points extracted as potential candidate
lane markings in the previous step may also arise from
other features, such as road markings, road surface pave-
ment, and rubble within construction work zones. There-
fore, these non-lane marking points should be removed
before proceeding to centerline derivation. The derivation
of centerline for lane marking segments from the extracted
high intensity points is achieved using the following steps:
(1) clustering potential candidate lane marking points
using a distance-based region growing, (2) partitioning
such clusters into subgroups, (3) removal of non-lane
marking points, and (4) centerline generation and down-
sampling to derive centerline segments.

First, a distance-based region growing is conducted
to group neighboring high intensity points into clusters.
When the number of points in a cluster is less than a
threshold (Thpt), the cluster is regarded as non-lane
marking and removed, as shown in Figure 6.3 (a-b).
Since road lanes may not be straight, each cluster is
divided into small segments along its main direction (as
derived from PCA). These partitioned segments can be
assumed to be straight, as illustrated Figure 6.3 (c).
Next, non-lane marking points of each segment are
detected and removed using a Random Sample Con-
sensus (RANSAC) strategy and trajectory. RANSAC
algorithm randomly selects a minimal number of data
points required to construct an estimate of a model and
then, checks the number of points from the entire
dataset that are consistent with the estimated model.
Here, the model estimate consists of line parameters.
Therefore, two randomly selected points are used to
define a straight line. Then, the normal distances of the
remaining points within the partitioned segment to the
line are calculated. If the normal distance of a point is
larger than a threshold (Wlane), it would be regarded as
an outlier. On the other hand, the points with normal
distance lying within the threshold (Wlane) are regarded
as inliers, thus constituting a consensus set for the

Figure 6.1 Flowchart of the lane width estimation strategy;
(a) input LiDAR point cloud (colored by height), (b) extracted
road surface, (c) candidate lane marking points, (d) deriva-
tion of lane marking centerline, (e) lane width vs. longitudinal
distance plot.

Figure 6.2 Illustration of the various thresholds—height
threshold (hIMU) and lateral distance threshold (dw)—for road
surface extraction.
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corresponding model. The threshold (Wlane) is defined
according to the expected width of a lane marking. This
procedure is repeated a certain number of times while
keeping track of the estimated models and their corres-
ponding consensus set size. The model with the largest
consensus set is designated to be the best model. Finally,
the largest consensus set is regarded as points belonging
to lane marking, as depicted in Figure 6.3 (d), and
utilized to derive the centerline parameters of the seg-
ment using an LSA model-fitting.

One should note that RANSAC can only remove
outliers within a segment but cannot deal with the case
where the entire segment does not represent a lane
marking. In this case, the trajectory data is utilized to
identify segments that do not belong to lane markings.
The lane markings are assumed to be always parallel to
the vehicle trajectory. Therefore, we can use this charac-
teristic to determine whether a segment represents lane
marking or not. When the direction of a segment is
similar to the trajectory, it is regarded as a lane mark-
ing segment, as shown in Figure 6.3 (e). A segment is
represented by the centerline parameters of the segment
(a direction vector and a point along the vector). In
order to generate a centerline segment, all the points in
the consensus set of the segment are projected onto the
LSA-based centerline, as illustrated in Figure 6.3 (f).
In this case, the projected points would be dense and a
down-sampling strategy is applied to reduce the number

of the projected points, as depicted in Figure 6.3 (g).
When applying the down-sampling strategy, the sample
points are picked within a segment at a fixed distance
interval, as shown in Figure 6.3 (g).

6.1.3 Lane Width Estimation

The lane width is derived as the normal distance between
the centerlines of lane markings located on opposite sides of
the trajectory along the driving lane. First, two trajectory
data points closest to the queried centerline point are
searched to define a trajectory vector along the driving
direction. Then, the queried centerline point can be
determined to be lying either to the left or to the right
side of the trajectory vector. After identifying the left and
right lane markings, as shown in Figure 6.4 (a) by the
blue dash line and red side line, the normal distance from
a point on one side to the straight line defined by the
two closest points on the other side can be derived and
regarded as lane width, as illustrated in Figure 6.4 (b).

However, the lane markings may not be continuous
(e.g., dash line or lane markings without strong reflection).
In such cases, they could lead to inaccurate estimation
of the normal distance. Hence, an interpolation between
the centerline points is applied first to fill the gaps,
as shown in Figure 6.4 (c). Figure 6.4 (d) provides
an example to show the inaccuracy in the derived nor-
mal distance when the interpolation is not applied.

Figure 6.3 Estimation of lane marking centerline (a) candidate lane marking points, (b) region growing-based clustering,
(c) cluster partition, (d) outlier removal: RANSAC-based, (e) outlier removal: trajectory-based, (f) lane marking centerline,
(g) down-sampled lane marking centreline. (Figure continued next page).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/10 21



Figure 6.3 (Continued)

Figure 6.4 Lane width estimation procedure; (a) illustration of opposite-side lane marking centerlines, (b) lane width derivation,
(c) interpolation among lane marking centerlines, and (d) inaccuracy in lane width estimation without centerline interpolation.
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One should note that after the interpolation, the nor-
mal distance derived from a point on the left side to the
straight line defined by the two closest points on the
right side would be similar to the normal distance derived
from a point on the right side to the straight line defined
by the two closest points on the left side.

6.2 Experimental Results and Analysis

6.2.1 Description of Datasets

To illustrate the performance and feasibility of the
proposed calibration strategy and lane width estimation
methodology, this section provides experimental results
from a total of six datasets collected for three road seg-
ments using different sensors in different seasons. A total
of four different HDL-32E sensors and one VLP-16
sensor are used to capture these datasets. The first road
segment is surveyed on two different days and it is
located at an interstate highway work zone area. Both
datasets are collected while driving west-bound from
mile post 19 to mile post 9 (i.e., a total of 11 miles).

This road segment is highlighted in Google Maps, as
shown in Figure 6.5 (a). The second road segment is
surveyed on three different days and it is a 3.7 mile
long segment located at a U.S. highway, as illustrated
in Figure 6.5 (b). The datasets for these two road seg-
ments are used for lane width estimation and repeat-
ability analysis of the proposed strategy. The third
road segment is located along a main arterial which is a
0.12 mile long segment, as depicted in Figure 6.5 (c).
This dataset is used to compare the derived lane width
values to on-site manual measurements and lane width
from manually digitized lane marking in order to dem-
onstrate the accuracy of the proposed method. The
description of the test datasets are listed in Table 6.1.

6.2.2 Experimental Results

In the following four sub-sections, four experiments
are discussed. First, we estimated the lane width from
a calibrated dataset and then, compared these results
to the ones obtained from the same dataset generated
after adding a bias to the system mounting parameters.

Figure 6.5 Location of test datasets and their trajectory (red), (a) interstate highway, (b) U.S. highway, (c) main arterial.
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This comparison shows the importance of an accurate
system calibration to derive accurate lane width estimates.
Then, in the second experiment, the 2016/11/30 dataset
including two different types of spinning multi-beam laser
scanners (i.e., VLP16 and HDL32E) is used to compare
their performance in lane width estimation. Moreover, the
similarity of derived lane width from the two sensors can
demonstrate the accuracy of derived mounting parameters
from the introduced multi-sensor system calibration pro-
cedure. The third experiment aims to prove the precision
of lane width estimation and calibration strategies by
comparing the lane width vs mile post plots obtained
from five datasets for the interstate highway and U.S.
highway (with a total length of approximately 30 miles)
scanned by different sensors in different seasons. Finally,
the last experiment is conducted to show the accuracy
of derived lane width by comparing the results obtained
for the dataset collected over the main arterial with that
from manually digitized lane marking centerline and
on-site manual measurements. The various thresholds
used for these experiments are listed in Table 6.2.

6.2.2.1 Impact of Mounting Parameters on Lane Width
Estimation. In this section, point clouds generated from
the HDL32E-2 and HDL32E-3 sensors on 2017/02/11
are used to demonstrate that deviations in the mounting
parameters would impact the derived lane width esti-
mates. In this experiment, a +2u and -2u bias is added to
the boresight parameters (Dv, Dj, Dk) of the HDL32E-
2 and HDL32E-3 sensors, respectively, to evaluate the
effect on lane width estimation from the dataset generated
using different estimates of the mounting parameters. One
should note that the two cases are characterized only by
the difference in mounting parameters and all the other
environmental variables, such as sensors, trajectory, time
and date of data collection, are identical. Figure 6.6 (a)
shows the extracted lane marking points for the dataset
generated using accurate as well as inaccurate estimates

of mounting parameters in green and orange colors,
respectively. It can be seen that the lane marking points
extracted using inaccurate mounting parameters are highly
distorted. Figure 6.6 (b-c) shows the derived centerline
(in blue) for the two different cases.

The comparison between lane width estimates obtained
using the two different sets of mounting parameters is
shown in Figure 6.7. The mean, standard deviation,
and RMSE values listed in Table 6.3 quantify the effect
of inaccurate mounting parameters on the lane width
estimation. Table 6.3 shows that compared with the
results obtained using accurate estimates of mounting
parameters, a change of 2u in the boresight parameters
of both sensors results in an RMSE of 27.91 cm.
Although the lane width estimation strategy includes
outlier removal and LSA-based line fitting that can
minimize the effect of inaccurate mounting parameters,
it cannot mitigate the effects altogether.

6.2.2.2 Performance Evaluation of Different Sensors.
The lane width estimates derived from point clouds
acquired by the VLP16 and HDL32E sensors on 2016/
11/30 for the U.S. Highway dataset are used to compare
the performance of these units for lane width estimation
and to comment on the accuracy of the derived moun-
ting parameters from the introduced multi-sensor cali-
bration procedure. In this experiment, the minimum
number of points to define candidate lane marking
(Thpt) for the VLP 16 dataset is 25 points, which is half
of the one for the HDL32E dataset due to the difference
in number of acquired pulses per second. The lane width
comparison analysis is shown in Figure 6.8 and the
quantitative evaluation is shown in Table 6.4.

The quantitative evaluation in Table 6.4 indicates
that the difference between the derived lane width
estimates from VLP16 and HDL32E is small, which
shows that both sensors are equally capable of accurate
lane width estimation. It also implies that the estimated

TABLE 6.1
Description of test datasets collected in this research

Road Segment Collection Date Used Sensor Length Driving Speed

Interstate Highway 2016/11/05 HDL32E-2 VLP16-1 11 mile 40 mile/hr

2017/05/02 HDL32E-2 HDL32E-3 40 mile/hr

U.S. Highway 2016/11/30 HDL32E-2 VLP16-1 3.7 mile 40 mile/hr

2017/02/11 HDL32E-2 HDL32E-3 35 mile/hr

2017/08/17 HDL32E-4 HDL32E-5 35 mile/hr

Main Arterial 2016/10/11 HDL32E-2 VLP16-1 0.12 mile 20 mile/hr

Note: HDL32E-2, HDL32E-3, HDL32E-4, and HDL32E-5 denote different LiDAR sensors of the same model

TABLE 6.2
Pre-defined thresholds for lane width estimation

Name Value

Lateral distance threshold for road surface extraction (dw) 3.0 m

Intensity threshold (ThI) 30-40

Minimum number of points to define candidate lane marking (Thpt)

Lane marking width threshold (Wlane) 0.12 m

50 pts
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mounting parameters of the two laser scanners are accu-
rate. However, there is a 0.86ft (26.21 cm) difference in
the location highlighted by the green box in Figure 6.8.
This difference can be attributed to the sparse nature of

the VLP16 point cloud due to which the clustered lane
marking points were less than the Thpt threshold so
centerline extraction at that location was incomplete
and the interpolated centerline could deviate from lane

Figure 6.7 Comparison of lane width estimates using accurate and inaccurate values of the mounting parameters for the 2017/02/
11 dataset from U.S. highway.

TABLE 6.3
Statistics of comparison between lane width estimates using accurate and inaccurate values of mounting parameters

Compared Datasets Mean Standard Deviation RMSE

2017/02/11 dataset with different estimates of

mounting parameters

23.28 cm (0.76 ft) 15.40 cm (0.51 ft) 27.91 cm (0.92 ft)

Figure 6.6 Lane marking points and derived centerline, (a) lane marking points (green: using accurate mounting parameters and
orange: using inaccurate mounting parameters), (b) lane marking points (green) and derived centerline (blue) using accurate
mounting parameters, and (c) lane marking points (orange) and derived centerline (blue) using inaccurate mounting parameters.
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markings. This problem was exacerbated by the fact
that we have a curved road segment at this location,
thus resulting in an inaccuracy in centerline interpola-
tion. Figure 6.9 (a-b) shows the lane marking points
(gray) and derived centerline (green and red) from both
laser scanners. After interpolation of the derived cen-
terline, as illustrated in Figure 6.9 (c), the maximum
deviation in that portion is around 0.86 ft. Since most
lane width estimates from VLP16 and HDL32E dataset
along this road segment are compatible, the effect of this
bias would be insignificant. However, such a discrepancy
would not arise in case of a straight portion, as illustrated

in Figure 6.10. This analysis leads us to the conclusion
that the lane width estimates from the two sensors are
compatible but in order to avoid the discrepancies caused
due to the sparse nature of point cloud acquired from
VLP16, it is recommended to have slower speed for
data collection when using such sensor.

6.2.2.3 Repeatability Analysis of Lane Width
Estimation. This section provides an evaluation of the
lane width estimation strategy using the datasets coll-
ected for two different road segments—an interstate high-
way segment and a U.S. highway segment. The intensity

Figure 6.8 Comparison of estimated lane width from VLP16 and HDL32E for the 2016/11/30 dataset from U.S. highway.

TABLE 6.4
Statistics of lane width comparison of VLP16 and HDL32E

Compared Datasets Mean Standard Deviation RMSE

VLP16 & HDL32E from 2016/11/30 0.007 cm (0.023 ft) 1.53 cm (0.050 ft) 1.68 cm (0.055 ft)

Figure 6.9 Anomalies in the marked area of Figure 6.8, (a) candidate lane marking points (gray) and the derived centerlines (green)
from VLP16, (b) candidate lane marking points (gray) and the derived centerlines (red) from HDL32E, and (c) candidate lane
marking points from VLP16 (gray), the interpolated centerline from VLP16 (blue), and the derived centerline from HDL32 (red).
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for the lane markings could be affected by the used
sensor units, weather, incidence angle of laser beams, and
quality of lane markings. So, the used ThI threshold
values in the processing of these six datasets varies from
30 to 40 depending on the above factors for each data-
set. For the interstate highway segment, two datasets are
used to derive the lane width and the obtained values are
compared by plotting the lane width vs mile post, as shown
in Figure 6.11. In section B of Figure 6.11, because of
construction lane closure, we drove on two different
lanes so the derived lane width is different. As a result,
we only applied the repeatability analysis from mile post
10 to mile post 19. From Figure 6.11, we can notice a

spike in the 2016/11/05 dataset, which is marked
by the red box. This spike is attributed to the poor
condition of lane markings, as shown in Figure 6.12 (a),
which in turn would result in an erroneous lane mark-
ing extraction, as illustrated in Figure 6.12 (b). How-
ever, this anomaly does not appear in the 2017/05/02
dataset, as shown in Figure 6.13. Since the poor lane
markings faded away after six months, the intensity of
LiDAR points at that area was not strong as the one
from the 2016/11/05 dataset.

For the U.S. highway segment, the comparisons
of lane width estimates from three datasets are shown
in Figure 6.14. The quantitative evaluation of the

Figure 6.10 Interpolation of straight portion, (a) the derived centerlines (green) and candidate lane marking points (gray) from
VLP16, (b) the derived centerlines (red) and candidate lane marking points (gray) from HDL32E, and (c) the interpolated
centerline from VLP16 (green), derived centerline from HDL32 (red), and candidate lane marking points from VLP16 (gray).

Figure 6.11 Comparison of estimated lane width from two datasets for the interstate highway section.
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repeatability analysis for the interstate highway and
U.S. highway is listed in Table 6.5, which shows that the
RMSEs from the comparison results range from 1.49 cm
to 3.01 cm, which is acceptable keeping in mind the LiDAR
point cloud accuracy obtained from error propagation.

The statistical results demonstrate the repeatability
of the proposed strategy when using different sensors
to collect data in different seasons and the precision
of estimated mounting parameters from the system
calibration.

Figure 6.12 Anomalies in 2016/11/05 dataset (a) RGB image, and (b) derived lane marking centerline (green) and extracted lane
marking points (gray).

Figure 6.13 2017/05/02 dataset for the area that had poor lane markings in 2016/11/05 dataset.

Figure 6.14 Comparison of estimated lane width from three datasets for the U.S. highway segment.
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One should note that usually in case of an area corres-
ponding to an intersection, there are no lane markings
and hence, the lane width is not defined. Moreover, the
lane markings when approaching an intersection area
would be curved as they are turning to the other road.
Therefore, the interpolated centerlines would be erro-
neous, thus leading to larger lane width estimates.
Figure 6.14 depicts such a case, where the spike within
the area marked by the red box is taking place at an
intersection and this spike occurs for each of the three
datasets. Figure 6.15 (a) shows the corresponding image
and Figure 6.15 (b) shows the extracted lane marking
points and lane marking centerline after interpolation.

6.2.2.4 Accuracy Analysis of Lane Width Estimation.
The main arterial segment is selected for comparing
the lane width obtained from the proposed strategy to
that from the manually digitized centerline and on-site
manual measurements of the corresponding lane width.
Figure 6.16 shows the extracted lane markings, their
derived centerline as well as the average lane width
estimate for each dash line using the proposed strategy.
To evaluate the accuracy of the derived lane width, the

corresponding value from on-site manual measurements
is derived by averaging four values, i.e., distance between
inner bounds, outer bounds, inner and outer bounds,
and outer and inner bounds of dash line and side lane
markings, respectively, as shown in Figure 6.17. More-
over, the lane width derived from a manually digitized
centerline is provided to analyze its difference from
the lane width estimates obtained from the proposed
strategy as well as ground truth. The comparison of
the estimated lane width from the proposed strategy
and corresponding value from the manually digitized
centerline as well as ground truth for each of the three
dash lines is shown in Figure 6.18. The difference
among derived lane width from the proposed strategy
and ground truth is around 0.1 ft (3.04 cm), which
validates the accuracy of the lane width estimates from
the proposed strategy and also indicates the accur-
acy of mounting parameter estimates from the sys-
tem calibration. Also, the difference between the lane
width obtained from the manually digitized centerline
and ground truth is around 0.04 ft (1.31 cm), which
again illustrates the accuracy of mounting parameter
estimates.

Figure 6.15 Road intersection area resulting in the spike in Figure 6.14: (a) captured image at the intersection, and (b) extracted
lane marking points (pink) and interpolated lane marking centerline (green).

TABLE 6.5
Statistic of lane width comparison from interstate highway datasets and U.S. highway dataset

Compared Datasets Mean Standard Deviation RMSE

Interstate Highway

2016/11/05 & 2017/05/02 1.22 cm (0.040 ft) 1.01 cm (0.036 ft) 1.65 cm (0.054 ft)

U.S. Highway

2016/11/30 & 2017/02/11 0.85 cm (0.028 ft) 1.22 cm (0.040 ft) 1.49 cm (0.049 ft)

2016/11/30 & 2017/08/17 2.74 cm (0.090 ft) 1.25 cm (0.041 ft) 3.02 cm (0.099 ft)
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7. IMPLEMENTATION

7.1 Data Collection

The first step in the process of data collection is to
mount the mapping system onto a mobile platform
(here, a car) and test the operation of the different
equipment in order to avoid any technical glitches
during the course of data collection. The setup of MMS
takes about 30 mins and Figure 7.1 shows some images
depicting the system setup. As discussed before, each
data collection is preceded by a calibration dataset

collection for which the calibration targets are set up in
an outdoor environment, which is accomplished in
another 30 mins, as shown in Figure 7.2. It is followed
by 5 mins of dynamic alignment of the GNSS/INS unit
and then, a total of approximately 10 mins of drive-
runs at an average speed of 4 miles per hour around
the calibration test field. After that, work zone data
is ready to be collected and needed to be monitored.
The driving speed for work zone data collection is
around 40 miles per hour. Finally, the data collec-
tion is ended with another dynamic alignment of the
system for 5 mins.

Figure 6.16 Extracted lane marking points (gray) and derived lane marking centerline (green), as well as estimated lane width
(unit: ft) using the proposed strategy.

Figure 6.17 On-site manual measurements of lane widths for the main arterial segment.

Figure 6.18 Comparison of derived lane width from proposed strategy and manually digitized centerline as well as ground truth
lane width.
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7.2. Data Processing

7.2.1 3D Point Cloud Reconstruction

The first and foremost step for 3D point cloud
reconstruction is the processing of GNSS/INS data to
generate the navigation dataset using the post-processing
software provided by NovAtel or Applanix (depending
on the used GNSS/INS unit), which takes about 30 mins.
The Velodyne laser units store the captured data in
PCAP format (encoded in a hexadecimal format, as
shown in Figure 7.3) that needs to be decoded in order
to extract useful information about the scanned points
and it is used along with the navigation data and initial
estimates of mounting parameters to reconstruct an
initial 3D point cloud (in *.las format). The time taken
to reconstruct all the PCAP files depends on the
amount of data collected and the number of threads
used during reconstruction (i.e., the number of PCAP
files that are simultaneously reconstructed). For instance,
a mission of 2.5 hrs will result in a total of about

82 PCAP files, which would take a total of approxi-
mately 1.5 hrs for reconstruction with 5 threads.

7.2.2 System Calibration

After reconstruction, the mounting parameters of MMS
are calibrated in order to be able to obtain a point cloud
with higher positional accuracy. First, the navigation data
is used to extract the beginning and ending times for each
of the parallel drive-runs around the calibration targets.
Next, the point cloud captured in each drive-run is stored
as a separate *.las file. These files are used to carry out a
semi-automatic conjugate feature extraction process for
calibration by determining seed points for highly reflective
sign boards and checkerboards, diagonally opposite cor-
ners of ground/wall patches, and end points of linear
features. The track separation and feature extraction
can be achieved in a total of around 1 hour. Now, the
extracted conjugate features are used as input for cali-
bration (which takes about 10 mins), thus resulting in
accurate estimates of mounting parameters.

Figure 7.1 Mounting the mapping system on a car/truck.

Figure 7.2 Deployment of calibration targets.
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7.2.3 Lane Width Estimation

Having accomplished a successful calibration, all the
PCAP files (raw laser scanning measurement) are again
reconstructed using the new accurate estimates of moun-
ting parameters to generate revised *.las files (point
clouds) that can be used for lane width estimation.
In order to estimate lane width, first the road surface is
extracted, which takes about 30 mins to 1 hour. Then,
the high intensity points representing the lane markings
are extracted from the road surface in 5 mins. Then, the

navigation data is used along with the high intensity
points to derive the lane marking centerline, which requires
10 mins. Finally, the derived centerlines from opposite
sides of the road are separated out and then, used to
derive the lane width estimates, which takes about
10 mins. Based on these given estimates of time taken
for each step, the total data processing time for any
collected dataset can be estimated. Table 7.1 sum-
marizes the different tasks involved in the entire
process of lane width estimation and their correspond-
ing execution time.

Figure 7.3 Sample PCAP file: (a) time from start of PCAP file, (b) IP address of the LiDAR sensor, (c) length of 1206 bytes
corresponds to data packet, (d) length of 512 corresponds to position packet, and (e) GPRMC message encoded within a position
packet.
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8. CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

8.1 Conclusions

This report proposed an approach for estimating
lane width along the driving lane from dense point
clouds acquired by a LiDAR-based MMS. The report
started by presenting the system architecture of an MMS
comprising several spinning multi-beam laser scanners,
camera, and GNSS/INS as well as introducing a LiDAR
calibration strategy for deriving the system mounting
parameters. In the proposed strategy, the road surface
along the driving lane was extracted with the assistance
of vehicle trajectory data. Next, lane marking points
were extracted based on the assumption that their
LiDAR intensity would be higher than those from pave-
ment. A distance-based region growing was applied to
cluster potential candidate lane marking points. The
clusters were partitioned into subgroups and RANSAC
algorithm was used along with the vehicle trajectory
information to remove non-lane marking points from
the subgroups. Finally, the lane marking centerline was
derived from each subgroup for lane width estimation.
One should note that a pre-defined threshold is used
for extracting the lane marking points. The sensitivity
of this threshold depends on the reflectivity of the lane
markings. When the reflection from the lane markings
is not strong, a lower threshold value is suggested to
set up to extract lane markings. In this case, non-lane
marking points may also be extracted but the proposed
strategy is capable of handling such scenarios and
remove the non-lane marking points.

To illustrate the performance of the proposed lane
width estimation strategy, we analyzed the results
from four different sets of experimental results using a

total of six datasets for three different road segments
surveyed on different dates using different sensors. The
first experiment emphasized the importance of system
calibration for deriving accurate lane width estimates
by observing the impact of variations in the mounting
parameters on lane marking extraction and lane width
estimation. The second experiment demonstrated that
the VLP16 and HDL32E laser scanners result in com-
patible estimates for lane width and also, it indicated
the accuracy of mounting parameters derived using the
proposed multi-sensor calibration strategy. The results
from the third experiment proved the repeatability of
the proposed lane width estimation strategy by anal-
yzing the precision of the results from multiple datasets
for two road segments. Finally, the fourth experiment
validated the accuracy of the lane width estimates
obtained using the proposed strategy. The precision of
the results obtained using the proposed strategy was
found to range from 1 cm to 3 cm and the accuracy
was around 3 cm, which is acceptable keeping in mind
the LiDAR point cloud accuracy obtained from error
propagation.

8.2 Recommendations for Future Work

This research only focuses on the driving lane but not
neighboring lanes. Future research will be concentrat-
ing on deriving lane width from the driving lane as well
as neighboring lanes. Currently, there is a requirement
to drive in each lane for which lane width needs to be
estimated. If the proposed strategy is extended to include
lane width estimation for neighboring lanes, it would
significantly reduce the time and effort required for
dataset collection. LiDAR-based lane width estimation
can be expanded by incorporating imagery dataset to

TABLE 7.1
Different tasks involved in lane width estimation and their execution time

Tasks Execution Time

Data Acquisition

Mobile mapping system setup

Deployment of calibration targets

Dynamic alignment (before data collection)

Drive-runs around calibration targets

Work zone data collection

Dynamic alignment (after data collection)

Data Processing

3D Point Cloud Reconstruction

GNSS/INS data processing

Initial point cloud reconstruction from PCAP files

System Calibration

Track separation and feature extraction

Calibration to estimate accurate mounting parameters

Lane Width Estimation

Accurate point cloud reconstruction using new estimates of mounting parameters

Road Surface Extraction

Extraction of lane markings

Derivation of lane marking centerline

Lane width estimation

30 mins

30 mins

5 mins

10 mins

Variable

5 mins

30 mins

Variable

1 hour

10 mins

Variable

30-60 mins

5 mins

10 mins

10 mins
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make data analysis more efficient as it would aid in relax-
ing the sensitivity of the proposed strategy on the intensity
value threshold. The flowchart shown in Figure 8.1
depicts a possible strategy for integration of imagery
and LiDAR data for positioning of lane markings.

Moreover, after extracting the lane markings, their
reflectivity can be analyzed to quantify their visibility.
For example, we generated some preliminary results by
analyzing the reflection of lane markings from rumble
strips having different wavelengths (12, 18, and 24 inches)
as well as non-rumble strip area. Image and LiDAR
points of lane markings from the rumble strip area

are shown in Figure 8.2. Based on the extracted lane
marking points, the cumulative distribution functions
from the rumble strip area and non-rumble strip area
are shown in Figure 8.3, which indicates that the
visibility of lane markings increases with a decrease in
the wavelength of rumble strips (i.e., the rumble strips
with 12 inch wavelength have higher visibility than those
with 18 inch and 24 inch wavelength) and also, the behav-
ior of rumble strips with 12 inch wavelength lane mark-
ings is similar to the non-rumble strip lane markings.

Another application where mobile mapping systems
can play a vital role is accident scene reconstruction.

Figure 8.1 Proposed integration of imagery and LiDAR data for lane marking positioning, (a) forward projection strategy,
(b) backward projection strategy.
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Figure 8.2 Rumble strip area with 12 inch, 18 inch, and 24 inch wavelengths: (a) imagery, and (b) lane marking points from
two HDL-32E laser scanners.

Figure 8.3 Cumulative distribution function for rumble strip and non-rumble strip areas.
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The current method used for accident scene reconstruc-
tion is time-consuming and could cause congestion due
to the lane closure for multiple hours. However, using
mobile mapping systems, the data can be collected in an
hour and it mitigates the requirement for lane closure. In
order to demonstrate such an application, an accident site
is simulated and the scene is reconstructed, as shown in
Figure 8.4. Additionally, mobile mapping systems can
also be used for infrastructure monitoring, such as MSE
wall deflection monitoring. Mobile mapping systems have
the ability to collect point cloud for several MSE walls
in a short time period. The acquired point cloud can be
used for deflection monitoring. The preliminary result
for MSE wall deflection map is shown in Figure 8.5.
The red box in the Figure 8.5 is the investigated

wall. These preliminary results indicate the ability of
using LiDAR and photogrammetric data for further
analysis in several other aspects of work zone moni-
toring, transportation applications, and identifying
road characteristics.

8.3 Implementation Scenarios

This report has illustrate the capabilities of a LiDAR-
based mobile mapping system in precisely and accurately
evaluating lane width in work zones while driving at a
speed of roughly 40 miles per hour. Operating such a
system would require a pre-mission calibration process
to derive the mounting parameters relating the LiDAR
units to the onboard GNSS/IMU. The implementation

Figure 8.4 Accident scene reconstruction, (a) LiDAR data colored by height, (b) corresponding imagery for LiDAR data.
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of such a system can be established through one of the
following routes:

1. Having a dedicated system at the disposal of INDOT for

the collection, processing, and reporting of lane width in

work zones in addition to mapping of other features such
as signage and tapers. The system could be also used to

compare the work zone layout to the Maintenance of
Traffic (MoT) design plans.

2. Another alternative would be drafting a set of standard

operation and reporting procedures and contracting a
Mobile Mapping Surveying outfit to carry the process.

For this process, a well-defined Quality Control (QC)
measures should be established to quantify the accuracy

of the reported lane width estimates.

In either of the above options, a clear reporting mech-
anism should be established to ensure transparent com-
munication between INDOT and the Project Engineer
for the construction work zone to facilitate expedited
mitigation of any issues that could affect the traffic flow
capacity. One should also keep in mind that this system

not only can be used for deriving lane width infor-
mation but also for reporting the alignment condition
of barriers, shoulder width, and taper length. Fur-
thermore, this system can be used to evaluate the
reflection of lane markings (which will be a critical factor
for Connected and Autonomous Vehicles). Finally, the
potential use of such system for accident scene documen-
tation and reduction of accident site clearance should be
investigated.
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Holgado-Barco, A., González-Aguilera, D., Arias-Sanchez, P.,
& Martinez-Sanchez, J. (2015). Semiautomatic extraction of
road horizontal alignment from a mobile LiDAR system.
Computer-Aided Civil and Infrastructure Engineering, 30(3),
217–228. https://doi.org/10.1111/mice.12087

Holgado-Barco, A., Gonzalez-Aguilera, D., Arias-Sanchez, P.,
& Martinez-Sanchez, J. (2014). An automated approach to
vertical road characterisation using mobile LiDAR systems:
Longitudinal profiles and cross-sections. ISPRS Journal of

Photogrammetry and Remote Sensing, 96, 28–37. https://doi.
org/10.1016/j.isprsjprs.2014.06.017

Kang, Y., Roh, C., Suh, S. B., & Song, B. (2012). A LiDAR-
based decision-making method for road boundary detec-
tion using multiple Kalman filters. IEEE Transactions on

Industrial Electronics, 59(11), 4360–4368. https://doi.org/
10.1109/TIE.2012.2185013

Kong, H., Audibert, J.-Y., & Ponce, J. (2010). General road
detection from a single image. IEEE Transactions on Image

Processing, 19(8), 2211–2220. https://doi.org/10.1109/TIP.
2010.2045715

Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T.
(2013). An automated algorithm for extracting road edges
from terrestrial mobile LiDAR data. ISPRS Journal of

Photogrammetry and Remote Sensing, 85, 44–55. https://doi.
org/10.1016/j.isprsjprs.2013.08.003

Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T.
(2014). Automated road markings extraction from mobile
laser scanning data. International Journal of Applied Earth

Observation and Geoinformation, 32, 125–137. https://doi.
org/10.1016/j.jag.2014.03.023

Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Yang, R.
(2013). Semantic decomposition and reconstruction of
residential scenes from LiDAR data. ACM Transactions

on Graphics (TOG), 32(4), Article 66. https://doi.org/10.
1145/2461912.2461969

Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., &
Magnor, M. (2008). A fast and robust approach to lane
marking detection and lane tracking. In 2008 IEEE Southwest

Symposium on Image Analysis and Interpretation (pp. 57–60).
Piscataway, NJ: Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/SSIAI.2008.4512284

Mekker, M. M., Lin, Y. J., Elbahnasawy, M. K. I.,
Shamseldin, T. S. A., Li, H., Habib, A. F., & Bullock, D.
M. (2018) Applications of LiDAR and connected vehicle
data to evaluate the impact of work zone geometry on
freeway traffic operations. Transportation Research Record.
https://doi.org/10.1177%2F0361198118758050

Muhammad, N., & Lacroix, S. (2010). Calibration of a rota-
ting multi-beam Lidar. In Proceedings of the International

Conference on IEEE/RSJ Intelligent Robots and Systems

(IROS) (pp. 5648–5653), October 18–22, Toulouse, France.

Novak, K., & Bossler, J. D. (1995). Development and applica-
tion of the highway mapping system of Ohio State University.
The Photogrammetric Record, 15(85), 123–134. https://doi.
org/10.1111/0031-868X.00012

NovAtel. (2014). SPAN-CPT user manual (Rev 8). Calgary,
Canada: NovAtel. Retrieved October 18, 2017, from
https://www.novatel.com/assets/Documents/Manuals/om-
20000122.pdf

Ozturk, O., Ozbay, K., & Yang, H. (2014). Estimating the
impact of work zones on highway safety (Paper No. 14-1873).
In TRB 93rd Annual Meeting compendium of papers [CD-
ROM]. Washington, DC: Transportation Research Board.
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